

Composting on the Farm

Andy Bary WSU-Puyallup

http://www.puyallup.wsu.edu/soilmgmt/

Let's consider composting

Time and Money
Lack of Equipment
Land
Odor
Weather
Materials
Nitrogen Loss

What can I compost?

- Animal manures
- Stray hay
- Vegetable matter
- Yard debris
- Wood shavings/chips
- News paper
- Animal mortalities
- Fish processing waste

Composting

Decomposition of organic materials by aerobic microorganisms under controlled conditions

Aerated Static Piles

Turned Windrow/piles

The Composting Process Heat Water CO₂ **Organic Matter Organic Minerals** matter, Compost minerals, Water Pile water, microbes Microorganisms **Raw Materials Finished compost**

Phases of Aerobic Composting Mesophilic phase: moderate temps, lasts for a few days

Thermophilic phase, high temps. Lasts from a few days to several weeks

Curing and maturation phase, moderate to ambient temps. Lasts 1-2 months.

Succession of Microbial Communities During Composting

1. Mesophilic bacteria
break down soluble,
readily degradable
compounds (sugars,
starches), initiating the
compost process

Succession of Microbial Communities

2. Thermophilic bacteria take over as the temperature increases, breaking down proteins, fats, cellulose, and hemicellulose.

Succession of Microbial Communities

3. Fungi and actinomycetes

are important during curing phase in attacking the most resistant compounds.

Factors that affect composting

C:N ratio
Moisture
Oxygen
Particle size
pH
Temperature

Compost	15-25:1
Grass clippings	15:1
Biosolids	5:1
Food wastes	15:1
Dairy manure	20:1
Leaves and foliage	60:1
Straw	80:1
Bark	115:1
Paper	170:1

Wood or sawdust

C:N Ratio

WASHINGTON STATE UNIVERSITY EXTENSION

500:1

Carbon Compounds and Decomposition

Carbohydrates (sugars, starches)

Cellulose

Hemicellulose

Chitin

Lignin

Fats and oils

Plant and animal structural components

Effects of Moisture on Decomposition

- Microbes need water to carry out life functions.
- Try to keep pile moisture content at 40 to 65% by weight.

Moisture

- To dry microbes can't move round and break down organic matter
- Too wet not enough
 O₂ for aerobic
 microbes and
 produce foul odors

Oxygen Management The Biochemistry of Microbial Breathing

Aerobic & Anaerobic respiration

Substrate (Feedstock) Quality Affects Composting Process

Effects of Particle Size and Porosity on Aeration

Loosely packed, well structured

Loosely packed, uniform size

Tightly packed, uniform size

Tightly packed, varied size

pH: Measure of Acidity or Alkalinity

- Bacterial decomposers prefer pH 6.0 to 7.5.
- Fungal decomposers prefer pH 5.5 to 8.0.
- Ideal range is 5.8 to 7.2.
- pH exceeding 7.5 can promote ammonia gas loss.

Oxygen: aerobic vs

 anaerobic microbes
 and odor production,
 slower process >5%

 Particle size: too large won't break down, too small effects oxygen content

 pH: Ideal range 5.5-8.0 high pH promotes ammonia

Temperature

PFRP Process to Further Reduce Pathogen

Pathogens

Escherichia coli, Salmonella spp., Staphylococcus aureus, Bacillus subtillus, Cryptosporidium, and Giardia are most common.

Pathogen Destruction

Heat
UV light
Desiccation
Competition
Toxicity

Which of these are at work during composting?

Pathogen Reduction (PFRP)

Turned pile composting

At least 15 days above 131°F with 5 turns

Aerated Static piles or in vessel composting

At least 3 days above 131°F

Aerated Static Pile Composting

Maintains aerobic conditions

Controls objectionable odors

Manage pile temperatures

- Expedite active composting & curing
- Produce superior compost products
- Changes PFRP times
- Bigger piles
- Moisture needs to be right from the get go
- Potential for over aerating (heat and moisture loss)
- Disposable materials

Turned Windrow Composting

Controls objectionable odors

Manage pile temperatures

- Expedite active composting & curing
- Changes PFRP times
- Smaller piles
- Easier to add water
- Bigger composting foot print required
- No electricity required

	Reasonable ranges	Preferred ranges
C:N ratio	20-40:1	25-30:1
H ₂ O content	40-65%	50-60%
O_2	>5%	>5%
Particle size	1/8-1/2in.	varies
рН	5.5-6.5	6.5-8.0
Temperature	110-150F	130-140F

Turned Windrow/piles

NRCS Compost Facility Design

Ag Bag

Aerated Static Pile

Aerated Static Pile

Passively Aerated Static Pile

Turned Windrow

Turned Bins

Turned Bins

Rotating Drum

Earth Tub

Wood Wire Portable Bin

Earth Machine

Rotating Drum

Tilterator

Mortality Slaughter Waste Offal Composting

Find a good location away from any *ground water, neighbors*, or *other animals*. Make sure there is adequate drainage.

Start with a 2-3 ft base of high carbon, absorbent material.

Add the carcass in the middle. Be sure there is at least 2 ft of the base material on each side.

Cover with another 2-3 ft of material. This is very important! If there is not enough material covering the carcass it will smell bad, attract pests, and take longer to break down.

Kitsap County

